
Kata-Log
All Topics

Choose Your Level
 Starter

 Experienced

Choose a Topic
Agile

BDD

Golden Master

Mocks

Outside-In

Pair-Programming

Refactoring

SOLID Principles

Software-Design

TDD

Choose a Constraint
Baby Steps

Ensemble Programming

Minimalist Coder

Mute Ping Pong

No Primitives

Simple Design

Tell! Don't ask!

The 70s Compiler

String Calculator Kata

Credits
Inspired by Roy Osherove

Step 1
Create a simple String calculator with a method signature:

 int Add(string numbers)

The method can take up to two numbers, separated by commas, and will return their sum.

For example “” or “1” or “1,2” as inputs.

For an empty string it will return 0.

Step 2
Allow the Add method to handle an unknown amount of numbers.

Step 3
Allow the Add method to handle new lines between numbers (instead of commas):

The following input is ok: “1\n2,3” (will equal 6)

The following input is NOT ok: “1,\n” (not need to prove it - just clarifying)

Step 4
Support different delimiters:

To change a delimiter, the beginning of the string will contain a separate line that looks like this:
“//[delimiter]\n[numbers…]” for example “//;\n1;2” should return three where the default delimiter is ‘;’ .

The first line is optional. All existing scenarios should still be supported.

Step 5
Calling Add with a negative number will throw an exception “negatives not allowed” - and the negative that was
passed.

If there are multiple negatives, show all of them in the exception message.

Step 6
Numbers bigger than 1000 should be ignored, so adding 2 + 1001 = 2

Step 7
Delimiters can be of any length with the following format: “//[delimiter]\n” for example: “//[***]\n1***2***3” should
return 6.

Step 8
Allow multiple delimiters like this: “//[delim1][delim2]\n” for example “//[*][%]\n1*2%3” should return 6.

Step 9
Make sure you can also handle multiple delimiters with length longer than one char.

Starting Points
C++, C#, Clojure, D, Elixir, F#, Go, Haskell, Java, JavaScript, Kotlin, PHP, Python, ReScript, Ruby, Rust, Scala, TypeScript

Clojure, CoffeeScript, C++, C#, Erlang, Groovy, Intercal, Java, JavaScript, Lisp, PHP, Ruby, Scala

Image credits
Image by Rachel M. Carmena. It represents a greeting of respect and gratitude made at the beginning and at the end of
a kata.

Incremental Kata - no peeping ahead!
This is an incremental kata to simulate a real business situation: work your way through the steps
in order, but do not read the next requirement before you have finished your current one.

Comprehensive Kata-Log made for facilitators and dojo lovers.
All contents are public domain and can be used without any strings attached.

Questions? Additions? Improvements?
Please add a new kata or create an issue .

Proudly hosted on GitHub

https://kata-log.rocks/index.html
https://kata-log.rocks/starter
https://kata-log.rocks/experienced
https://kata-log.rocks/agile
https://kata-log.rocks/bdd
https://kata-log.rocks/golden-master
https://kata-log.rocks/mocks
https://kata-log.rocks/outside-in
https://kata-log.rocks/pair-programming
https://kata-log.rocks/refactoring
https://kata-log.rocks/solid-principles
https://kata-log.rocks/software-design
https://kata-log.rocks/tdd
https://kata-log.rocks/baby-steps
https://kata-log.rocks/ensemble-programming
https://kata-log.rocks/minimalist-coder
https://kata-log.rocks/mute-ping-pong
https://kata-log.rocks/no-primitives
https://kata-log.rocks/simple-design
https://kata-log.rocks/tell-dont-ask
https://kata-log.rocks/the-70s-compiler
https://kata-log.rocks/images/default.jpg
http://osherove.com/tdd-kata-1/
https://github.com/swkBerlin/kata-bootstraps
https://github.com/coreyhaines/coderetreat/tree/master/starting_points
https://github.com/rachelcarmena
http://unlicense.org/
https://github.com/Egga/kata-log/blob/master/README.md
https://github.com/Egga/kata-log/issues
https://github.com/

